46 research outputs found

    Multisensory-driven facilitation within the peripersonal space is modulated by the expectations about stimulus location on the body

    Get PDF
    Compelling evidence from human and non-human studies suggests that responses to multisensory events are fastened when stimuli occur within the space surrounding the bodily self (i.e., peripersonal space; PPS). However, some human studies did not find such effect. We propose that these dissonant voices might actually uncover a specific mechanism, modulating PPS boundaries according to sensory regularities. We exploited a visuo-tactile paradigm, wherein participants provided speeded responses to tactile stimuli and rated their perceived intensity while ignoring simultaneous visual stimuli, appearing near the stimulated hand (VTNear) or far from it (VTFar; near the non-stimulated hand). Tactile stimuli could be delivered only to one hand (unilateral task) or to both hands randomly (bilateral task). Results revealed that a space-dependent multisensory enhancement (i.e., faster responses and higher perceived intensity in VTNear than VTFar) was present when highly predictable tactile stimulation induced PPS to be circumscribed around the stimulated hand (unilateral task). Conversely, when stimulus location was unpredictable (bilateral task), participants showed a comparable multisensory enhancement in both bimodal conditions, suggesting a PPS widening to include both hands. We propose that the detection of environmental regularities actively shapes PPS boundaries, thus optimizing the detection and reaction to incoming sensory stimuli

    Physical but not virtual presence of others potentiates implicit and explicit learning

    Get PDF
    E-learning activities are becoming more and more common. Whilst it is well known that the physical presence of others motivates individuals to engage in perceptual and learning tasks, systematic investigations comparing the effects of physical and virtual co-presence of others on knowledge acquisition are still scarce. Here we investigate the effects of physical and virtual co-presence of others on explicit and implicit learning. In Experiment 1 (discovery sample), retrieval accuracy in a spatial memory task and EEG indexes (mismatch negativity-MMN) of implicit perceptual learning were recorded when participants were alone or in presence of another individual. In Experiment 2 (replicating sample), we added a “virtual” condition, where the same tasks were performed during a video-conference call. In both experiments, MMN was demonstrated to encode for perceptual learning as revealed by the significant correlation with Bayesian Surprise (a consolidated information-theoretic index of Bayesian learning). Furthermore, In Experiments 1 and 2 physical co-presence systematically ameliorated memorization performances and increased MMN indexes related to implicit learning. These positive effects were absent in the virtual condition, thus suggesting that only physical, but not virtual co-presence is effective in potentiating learning dynamics

    ‘See Me, Feel Me’: Prismatic Adaptation of an Alien Limb Ameliorates Spatial Neglect in a Patient Affected by Pathological Embodiment

    Get PDF
    Pathological embodiment (E+) is a specific contralesional delusion of body ownership, observed following brain damage, in which patients embody someone else’s arm and its movements within their own body schema whenever the contralesional ‘alien’ arm is presented in a body-congruent position (i.e., 1st person perspective and aligned with the patient’s shoulder). This disorder is often associated with spatial neglect, a neurological syndrome in which patients are unaware of stimuli presented in the contralesional (often the left) space. Capitalizing on previous evidence demonstrating that prismatic adaptation of the ipsilesional arm to right-deviating prisms is effective in ameliorating neglect symptoms, here we investigated whether such amelioration also occurs in E+ patients with neglect when prismatic training is performed by the ‘alien’ embodied arm. Four left neglect patients (one with and three without pathological embodiment) underwent visuomotor prismatic training performed by an ‘alien’ arm. Specifically, while patients were wearing prismatic goggles shifting the visual field rightward, a co-experimenter’s left arm presented in a body-congruent perspective was repeatedly moved toward visual targets by another examiner. In a control condition, the co-experimenter’s arm was moved toward the targets from a body-incongruent position (i.e., 3rd person perspective). Neglect symptoms were assessed before and after training through paper-and-pencil tasks. In the E+ patient, neglect improved significantly more in 1st than in 3rd person perspective training, suggesting that prismatic adaptation of the ‘alien’ embodied arm is effective in modulating spatial representation. Conversely, for control E- patients (not embodying the ‘alien’ arm), we observed more limited improvements following training. These findings indicate that the ‘alien’ embodied arm is so deeply embedded in the patient body and motor schema that adaptation to prismatic lenses can affect multiple processing stages, from low level sensory-motor correspondences, to higher level body, motor and spatial maps, similarly as it occurs in normal subjects and neglect patients without pathological embodiment
    corecore